国产粉嫩小泬在线观看泬-亚洲中文字幕无码乱线-色呦呦官网-国产色爽-偷窥村妇洗澡毛毛多-亚洲狠狠做深爱婷婷影院-国产精品1-国产精彩视频在线-无码精品人妻一区二区三区免费看-国产av老师丝袜美腿丝袜-久久99婷婷-成人性生生活性生交3-性xxxx狂欢老少配o-九九九久久久久-黄色免费网站在线看-亚洲综合色区另类小说-欧美a∨-av在线免费观看网址-岛国av在线免费观看-国产精品v片在线观看不卡

你的位置:首頁 > 電源管理 > 正文

一步一步教你設計開關電源

發布時間:2018-08-15 責任編輯:wenwei

【導讀】開關電源的設計是一份非常耗時費力的苦差事,需要不斷地修正多個設計變量,直到性能達到設計目標為止。本文step-by-step 介紹反激變換器的設計步驟,并以一個6.5W 隔離雙路輸出的反激變換器設計為例,主控芯片采用NCP1015。
 
一步一步教你設計開關電源
 
基本的反激變換器原理圖如圖 1 所示,在需要對輸入輸出進行電氣隔離的低功率(1W~60W)開關電源應用場合,反激變換器(Flyback Converter)是最常用的一種拓撲結構(Topology)。簡單、可靠、低成本、易于實現是反激變換器突出的優點。
 
設計步驟
 
一步一步教你設計開關電源
 
接下來,參考圖 2 所示的設計步驟,一步一步設計反激變換器
 
1.Step1:初始化系統參數
 
------輸入電壓范圍:Vinmin_AC 及Vinmax_AC
------電網頻率:fline(國內為50Hz)
------輸出功率:(等于各路輸出功率之和)
 
一步一步教你設計開關電源
 
------初步估計變換器效率:η(低壓輸出時,η取0.7~0.75,高壓輸出時,η取0.8~0.85)根據預估效率,估算輸入功率:
 
一步一步教你設計開關電源
 
對多路輸出,定義KL(n)為第n 路輸出功率與輸出總功率的比值:
 
一步一步教你設計開關電源
 
單路輸出時,KL(n)=1.
 
一步一步教你設計開關電源
 
2. Step2:確定輸入電容Cbulk
 
Cbulk 的取值與輸入功率有關,通常,對于寬輸入電壓(85~265VAC),取2~3μF/W;對窄范圍輸入電壓(176~265VAC),取1μF/W 即可,電容充電占空比Dch 一般取0.2 即可。
 
一步一步教你設計開關電源
 
一般在整流后的最小電壓Vinmin_DC 處設計反激變換器,可由Cbulk 計算Vinmin_DC:
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
3. Step3:確定最大占空比Dmax
 
反激變換器有兩種運行模式:電感電流連續模式(CCM)和電感電流斷續模式(DCM)。兩種模式各有優缺點,相對而言,DCM 模式具有更好的開關特性,次級整流二極管零電流關斷,因此不存在CCM 模式的二極管反向恢復的問題。此外,同功率等級下,由于DCM模式的變壓器比CCM 模式存儲的能量少,故DCM 模式的變壓器尺寸更小。但是,相比較CCM 模式而言,DCM 模式使得初級電流的RMS 增大,這將會增大MOS 管的導通損耗,同時會增加次級輸出電容的電流應力。因此,CCM 模式常被推薦使用在低壓大電流輸出的場合,DCM 模式常被推薦使用在高壓 小電流輸出的場合。
 
一步一步教你設計開關電源
圖 4 反激變換器
 
對CCM 模式反激變換器而言,輸入到輸出的電壓增益僅僅由占空比決定。而DCM 模式反激變換器,輸入到輸出的電壓增益是由占空比和負載條件同時決定的,這使得DCM 模式的電路設計變得更復雜。但是,如果我們在DCM 模式與CCM 模式的臨界處(BCM 模式)、輸入電壓最低(Vinmin_DC)、滿載條件下,設計DCM 模式反激變換器,就可以使問題變得簡單化。于是,無論反激變換器工作于CCM 模式,還是DCM 模式,我們都可以按照CCM模式進行設計。
 
如圖 4(b)所示,MOS 管關斷時,輸入電壓Vin 與次級反射電壓nVo 共同疊加在MOS的DS 兩端。最大占空比Dmax 確定后,反射電壓Vor(即nVo)、次級整流二極管承受的最大電壓VD 以及MOS 管承受的最大電壓Vdsmax,可由下式得到:
 
一步一步教你設計開關電源
 
通過公式(5)(6)(7),可知,Dmax 取值越小,Vor 越小,進而MOS 管的應力越小,然而,次級整流管的電壓應力卻增大。因此,我們應當在保證MOS 管的足夠裕量的條件下,盡可能增大Dmax,來降低次級整流管的電壓應力。Dmax 的取值,應當保證Vdsmax 不超過MOS管耐壓等級的80%;同時,對于峰值電流模式控制的反激變換器,CCM 模式條件下,當占空比超過0.5 時,會發生次諧波震蕩。綜合考慮,對于耐壓值為700V(NCP1015)的MOS管,設計中,Dmax 不超過0.45 為宜。
 
一步一步教你設計開關電源
 
4. Step4:確定變壓器初級電感Lm
 
對于CCM 模式反激,當輸入電壓變化時,變換器可能會從CCM 模式過渡到DCM 模式,對于兩種模式,均在最惡劣條件下(最低輸入電壓、滿載)設計變壓器的初級電感Lm。由下式決定:
 
一步一步教你設計開關電源
 
其中,fsw 為反激變換器的工作頻率,KRF 為電流紋波系數,其定義如下圖所示:
 
一步一步教你設計開關電源
 
對于DCM 模式變換器,設計時KRF=1。對于CCM 模式變換器,KRF<1,此時,KRF 的取值會影響到初級電流的均方根值(RMS),KRF 越小,RMS 越小,MOS 管的損耗就會越小,然而過小的KRF 會增大變壓器的體積,設計時需要反復衡量。一般而言,設計CCM 模式的反激變換器,寬壓輸入時(90~265VAC),KRF 取0.25~0.5;窄壓輸入時(176~265VAC),KRF 取0.4~0.8 即可。
 
一旦Lm 確定,流過MOS 管的電流峰值Idspeak 和均方根值Idsrms 亦隨之確定:
 
一步一步教你設計開關電源
 
其中:
 
一步一步教你設計開關電源
 
設計中,需保證Idspeak 不超過選用MOS 管最大電流值80%,Idsrms 用來計算MOS 管的導通損耗Pcond,Rdson 為MOS 管的導通電阻。
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
5. Step5:選擇合適的磁芯以及變壓器初級電感的匝數
 
開關電源設計中,鐵氧體磁芯是應用最廣泛的一種磁芯,可被加工成多種形狀,以滿足不同的應用需求,如多路輸出、物理高度、優化成本等。
 
實際設計中,由于充滿太多的變數,磁芯的選擇并沒有非常嚴格的限制,可選擇的余地很大。其中一種選型方式是,我們可以參看磁芯供應商給出的選型手冊進行選型。如果沒有合適的參照,可參考下表:
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
選定磁芯后,通過其Datasheet 查找Ae 值,及磁化曲線,確定磁通擺幅△B,次級線圈匝數由下式確定:
 
一步一步教你設計開關電源
 
其中,DCM 模式時,△B 取0.2~0.26T;CCM 時,△B 取0.12~0.18T。
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
6. Step6:確定各路輸出的匝數
 
先確定主路反饋繞組匝數,其他繞組的匝數以主路繞組匝數作為參考即可。主反饋回路繞組匝數為:
 
一步一步教你設計開關電源
 
則其余輸出繞組的匝數為:
 
一步一步教你設計開關電源
 
輔助線圈繞組的匝數Na 為:
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
7. Step7:確定每個繞組的線徑
 
根據每個繞組流過的電流RMS 值確定繞組線徑。
 
一步一步教你設計開關電源
 
初級電感繞組電流RMS:
 
一步一步教你設計開關電源
 
次級繞組電流RMS 由下式決定:
 
一步一步教你設計開關電源
 
ρ為電流密度,單位:A/mm2,通常,當繞組線圈的比較長時(>1m),線圈電流密度取5A/mm2;當繞組線圈長度較短時,線圈電流密度取6~10A/mm2。當流過線圈的電流比較大時,可以采用多組細線并繞的方式,以減小集膚效應的影響。
 
一步一步教你設計開關電源
 
其中,Ac 是所有繞組導線截面積的總和,KF 為填充系數,一般取0.2~0.3.
 
檢查磁芯的窗口面積(如圖 7(a)所示),大于公式 21 計算出的結果即可。
 
一步一步教你設計開關電源
 
8. Step8:為每路輸出選擇合適的整流管
 
每個繞組的輸出整流管承受的最大反向電壓值VD(n)和均方根值IDrms(n)如下:
 
一步一步教你設計開關電源
 
選用的二極管反向耐壓值和額定正向導通電流需滿足:
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
9. Step9:為每路輸出選擇合適的濾波器
 
第n 路輸出電容Cout(n)的紋波電流Icaprms(n)為:
 
一步一步教你設計開關電源
 
選取的輸出電容的紋波電流值Iripple 需滿足:
 
一步一步教你設計開關電源
 
輸出電壓紋波由下式決定:
 
一步一步教你設計開關電源
 
有時候,單個電容的高ESR,使得變換器很難達到我們想要的低紋波輸出特性,此時可通過在輸出端多并聯幾個電容,或加一級LC 濾波器的方法來改善變換器的紋波噪聲。注意:LC 濾波器的轉折頻率要大于1/3 開關頻率,考慮到開關電源在實際應用中可能會帶容性負載,L 不宜過大,建議不超過4.7μH。
 
一步一步教你設計開關電源
 
10. Step10:鉗位吸收電路設計
 
如圖 8 所示,反激變換器在MOS 關斷的瞬間,由變壓器漏感LLK 與MOS 管的輸出電容造成的諧振尖峰加在MOS 管的漏極,如果不加以限制,MOS 管的壽命將會大打折扣。因此需要采取措施,把這個尖峰吸收掉。
 
一步一步教你設計開關電源
 
反激變換器設計中,常用圖 9(a)所示的電路作為反激變換器的鉗位吸收電路(RCD鉗位吸收)。
 
RClamp 由下式決定,其中Vclamp 一般比反射電壓Vor 高出50~100V,LLK 為變壓器初級漏感,以實測為準:
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
圖 9 RCD 鉗位吸收
 
CClamp 由下式決定,其中Vripple 一般取Vclamp 的5%~10%是比較合理的:
 
一步一步教你設計開關電源
 
輸出功率比較小(20W 以下)時,鉗位二極管可采用慢恢復二極管,如1N4007;反之,則需要使用快恢復二極管。
 
一步一步教你設計開關電源
 
11. Step11:補償電路設計
 
開關電源系統是典型的閉環控制系統,設計時,補償電路的調試占據了相當大的工作量。目前流行于市面上的反激控制器,絕大多數采用峰值電流控制控制模式。峰值電流模式反激的功率級小信號可以簡化為一階系統,所以它的補償電路容易設計。通常,使用Dean Venable提出的Type II 補償電路就足夠了。
 
在設計補償電路之前,首先需要考察補償對象(功率級)的小信號特性。
如圖8 所示,從IC 內部比較器的反相端斷開,則從控制到輸出的傳遞函數(即控制對象的傳遞函數)為:
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
附錄分別給出了CCM模式和DCM模式反激變換器的功率級傳遞函數模型。NCP1015工作在DCM 模式,從控制到輸出的傳函為:
 
一步一步教你設計開關電源
 
其中:
 
一步一步教你設計開關電源
 
Vout1 為主路輸出直流電壓,k 為誤差放大器輸出信號到電流比較器輸入的衰減系數(對NCP1015 而言,k=0.25),m 為初級電流上升斜率,ma 為斜坡補償的補償斜率(由于NCP1015內部沒有斜坡補償,即ma=0),Idspeak 為給定條件下初級峰值電流。于是我們就可以使用Mathcad(或Matlab)繪制功率級傳函的Bode 圖:
 
一步一步教你設計開關電源
 
在考察功率級傳函Bode 圖的基礎上,我們就可以進行環路補償了。
 
前文提到,對于峰值電流模式的反激變換器,使用Dean Venable Type II 補償電路即可,典型的接線方式如下圖所示:
 
一步一步教你設計開關電源
 
通常,為降低輸出紋波噪聲,輸出端會加一個小型的LC 濾波器,如圖 10 所示,L1、C1B 構成的二階低通濾波器會影響到環路的穩定性,L1、C1B 的引入,使變換器的環路分析變得復雜,不但影響功率級傳函特性,還會影響補償網絡的傳函特性。然而,建模分析后可知:如果L1、C1B 的轉折頻率大于帶寬fcross 的5 倍以上,那么其對環路的影響可以忽略不計,實際設計中,建議L1 不超過4.7μH。于是我們簡化分析時,直接將L1直接短路即可,推導該補償網絡的傳遞函數G(s)為:
 
一步一步教你設計開關電源
 
其中:
 
一步一步教你設計開關電源
 
CTR 為光耦的電流傳輸比,Rpullup 為光耦次級側上拉電阻(對應NCP1015,Rpullup=18kΩ),Cop 為光耦的寄生電容,與Rpullup 的大小有關。圖 13(來源于Sharp PC817 的數據手冊)是光耦的頻率響應特性,可以看出,當RL(即Rpullup)為18kΩ時,將會帶來一個約2kHz左右的極點,所以Rpullup 的大小會直接影響到變換器的帶寬。
 
一步一步教你設計開關電源
 
k Factor(k 因子法)是Dean Venable 在20 世紀80 年代提出來的,提供了一種確定補償網絡參數的方法。
 
一步一步教你設計開關電源
 
如圖 14 所示,將Type II 補償網絡的極點wp 放到fcross 的k 倍處,將零點wz 放到fcross的1/k 處。圖 12 的補償網絡有三個參數需要計算:RLed,Cz,Cpole,下面將用k Factor 計算這些參數:
 
一步一步教你設計開關電源
 
確定補償后的環路帶寬fcross:通過限制動態負載時(△Iout)的輸出電壓過沖量(或下沖量)△Vout,由下式決定環路帶寬:
 
一步一步教你設計開關電源
 
-------考察功率級的傳函特性,確定補償網絡的中頻帶增益(Mid-band Gain):
 
一步一步教你設計開關電源
 
-------確定Dean Venable 因子k:選擇補償后的相位裕量PM(一般取55°~80°),由公式 32 得到fcross 處功率級的相移(可由Mathcad 計算)PS,則補償網絡需要提升的相位Boost 為:
 
一步一步教你設計開關電源
 
則k 由下式決定:
 
一步一步教你設計開關電源
 
-------補償網絡極點(wp)放置于fcross 的k 倍處,可由下式計算出Cpole:
 
一步一步教你設計開關電源
 
-------補償網絡零點(wz)放置于fcross 的1/k 倍處,可由下式計算出Cz:
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
仿真驗證
 
計算機仿真不僅可以取代系統的許多繁瑣的人工分析,減輕勞動強度,避免因為解析法在近似處理中帶來的較大誤差,還可以與實物調試相互補充,最大限度的降低設計成本,縮短開發周期。
 
本例采用經典的電流型控制器UC3843(與NCP1015 控制原理類似),搭建反激變換器。其中,變壓器和環路補償參數均采用上文的范例給出的計算參數。
 
仿真測試條件:低壓輸入(90VAC,雙路滿載)
 
1.原理圖
 
一步一步教你設計開關電源
圖 17 仿真原理圖
 
2. 瞬態信號時域分析
 
一步一步教你設計開關電源
 
從圖 18 可以看出,最低Cbulk 上的最低電壓為97.3V,與理論值98V 大致相符。
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
3. 交流信號頻域分析
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
一步一步教你設計開關電源
 
4. 動態負載波形測試
 
測試條件:低壓輸入,滿載,主路輸出電流0.1A---1A---0.1A,間隔2.5ms,測試輸出電壓波形。
 
一步一步教你設計開關電源
 
PCB設計指導
 
1. PCB layout—大電流環路包圍的面積應極可能小,走線要寬。
 
一步一步教你設計開關電源
 
2. PCB layout—高頻(di/dt、dv/dt)走線
 
a. 整流二級,鉗位吸收二極管,MOS 管與變壓器引腳,這些高頻處,引線應盡可能短,layout 時避免走直角;
b. MOS 管的驅動信號,檢流電阻的檢流信號,到控制IC 的走線距離越短越好;
 
c. 檢流電阻與MOS 和GND 的距離應盡可能短。
 
一步一步教你設計開關電源
 
3. PCB layout—接地
 
初級接地規則:
 
a. 所有小信號GND 與控制IC 的GND 相連后,連接到Power GND(即大信號GND);
 
b. 反饋信號應獨立走到IC,反饋信號的GND 與IC 的GND 相連。
 
次級接地規則:
 
a. 輸出小信號地與相連后,與輸出電容的的負極相連;
 
b. 輸出采樣電阻的地要與基準源(TL431)的地相連。
 
一步一步教你設計開關電源
 
PCB layout—實例
 
一步一步教你設計開關電源
 
總結
 
本文詳細介紹了反激變換器的設計步驟,以及PCB 設計時應當注意的事項,并采用軟件仿真的方式驗證了設計的合理性。同時,在附錄部分,分別給出了峰值電流模式反激在CCM 模式和DCM 模式工作條件下的功率級傳遞函數。
 
附錄:峰值電流模式功率級小信號
 
對CCM 模式反激,其控制到輸出的傳函為:
 
一步一步教你設計開關電源
 
峰值電流模式的電流內環,本質上是一種數據采集系統,功率級傳函由兩部分Hp(s)和Hh(s)串聯組成,其中
 
一步一步教你設計開關電源
 
Hh(s)為電流環電流采樣形成的二階采樣環節(由Ray Ridley 提出):
 
一步一步教你設計開關電源
 
其中:
 
一步一步教你設計開關電源
 
上式中,PO 為輸出總功率,k 為誤差放大器輸出信號到電流比較器輸入的衰減系數,Vout1 為反饋主路輸出電壓,Rs 為初級側檢流電阻,D 為變換器的占空比,n 為初級線圈NP與主路反饋線圈Ns1 的匝比,m 為初級電流上升斜率,ma 為斜坡補償的補償斜率,Esr 為輸出電容的等效串聯電阻,Cout 是輸出電容之和。
 
注意:CCM 模式反激變換器,從控制到輸出的傳函,由公式 40 可知,有一個右半平面零點,它在提升幅值的同時,帶來了90°的相位衰減,這個零點不是我們想要的,設計時應保證帶寬頻率不超過右半平面零點頻率的1/3;由公式 41 可知,如果不加斜坡補償(ma=0),當占空比超過50%時,電流環震蕩,表現為驅動大小波,即次諧波震蕩。因此,設計CCM 模式反激變換器時,需加斜坡補償。
 
對DCM 模式反激,控制到輸出的傳函為:
 
一步一步教你設計開關電源
 
其中:
 
一步一步教你設計開關電源
 
Vout1 為主路輸出直流電壓,k 為誤差放大器輸出信號到電流比較器輸入的衰減系數,m為初級電流上升斜率,ma 為斜坡補償的補償斜率,Idspeak 為給定條件下初級峰值電流。
 
 
推薦閱讀:
 
干貨|老工程師帶你飛 輕松理解ESD
如何管理GHz及更高頻率下的EMI和EMC?
近十年超級電容器領域的重大突破
Digi-Key 通過與知名供應商合作,拓展工業自動化產品組合;支持移動設備的新登陸頁面
拿什么拯救你 中國汽車傳感器產業?
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索

關閉

?

關閉

主站蜘蛛池模板: 成人免费精品网站在线观看影片 | 国产美女精品自在线拍免费下载出 | 91丨九色丨蝌蚪丨丝袜 | 亚洲欧美精品suv | 91色国产 | 96亚洲精品久久久蜜桃 | 色婷婷亚洲婷婷7月 | 亚洲国产精品成人综合色在线婷婷 | 无码吃奶揉捏奶头高潮视频 | 污污污污污污污网站污 | 色妞色视频一区二区三区四区 | 果冻传媒2021精品一区 | 久久综合国产乱子伦精品免费 | 少妇熟女久久综合网色欲 | 西西人体大胆啪啪实拍 | 影音先锋国产 | av一区不卡 | 国产精选bt天堂 | 日韩一区不卡 | 风间由美乳巨码无在线 | 久久综合一色综合久久小蛇 | 亚洲综合色aaa成人无码 | 91久久爽久久爽爽久久片 | 北条麻妃人妻av在线专区 | 国产精品久久久久久久久久红粉 | 久久伊人精品影院一本到综合 | 老司机午夜视频十八福利 | 国产精品无码永久免费888 | 精品人妻无码一区二区三区蜜桃一 | 日韩精品――中文字幕 | 91香蕉在线看 | 国产精品国产精品 | 午夜精品久久久久久中宇 | 无码国产色欲xxxxx视频 | 日韩精品视频在线 | 黄色香港三级三级三级 | 嫖妓大龄熟妇正在播放 | 成人欧美一区二区三区视频 | 中文字幕精品一区久久久久 | 日本va欧美va国产激情 | 国产女人和拘做受视频免费 | 99re视频热这里只有精品7 | 欧美成人精品一区二区综合a片 | 人人玩人人添人人澡超碰偷拍 | 亚洲香蕉视频 | 国产精品自在自线视频 | 色婷婷av一区二区三区软件 | 欧美小视频在线观看 | 夫妻淫语绿帽对白 | 久久九九有精品国产尤物 | 强插女教师av在线 | 久久资源av | 九九热在线观看视频 | 欧美永久免费 | 久久国产影院 | 天堂网www天堂资源网 | 欧美另类一区二区 | 一本加勒比hezyo无码资源网 | 亚洲a成人片在线观看 | 亚洲自拍在线观看 | 真实国产乱子伦精品一区二区三区 | 久久99国内精品自在现线 | 国产亚洲精品综合一区 | 国产成人精品无码一区二区三区 | 亚洲色www永久网站 欧美人成网站在线看 | www网站在线免费观看 | 一区二区不卡av免费观看 | 亚洲国产区男人本色vr | 毛茸茸的中国女bbw 欧洲美女黑人粗性暴交 | 啪视频在线 | 久久三级网站 | 国产一区二区三区视频在线观看 | 亚洲福利在线观看 | 中文文字幕文字幕亚洲色 | 伊人久久亚洲精品一区 | 精品在线视频观看 | 九九热在线视频播放 | 亚洲性欧美色 | 韩国激情呻吟揉捏胸视频 | 激情视频在线免费观看 | 亚洲精品中文字幕在线 | 亚洲精品国产精品乱码不卞 | 国产极品在线观看 | 久久青草欧美一区二区三区 | 成人一区二区三区 | 亚洲中文无码av永久伊人 | 超级碰碰色偷偷免费视频 | 国产亚洲欧美精品永久 | 狠狠色色综合网站 | 色婷婷亚洲十月十月色天 | 久射久| 视频一区日韩 | 亚洲国产天堂久久久久久 | 欧美日韩图片 | 双乳被老汉揉搓a毛片免费观看 | 超清无码波多野吉衣中文 | 日本久久综合 | 日韩精品免费一区二区三区竹菊 | 一本之道中文日本高清 | 主站蜘蛛池模板: 亚洲六月婷婷 | 人妻少妇精品视频无码专区 | 天堂av影院 | 久久久久人妻精品一区 | 影音先锋女人aa鲁色资源 | 玖玖精品 | 日韩超碰人人爽人人做人人添 | 在线免费观看黄色小视频 | 免费视频中文字幕 | 国产69精品久久久久9999 | 激情综合亚洲 | 免费在线观看av的网站 | 男人天堂2018亚洲男人天堂 | 国产v在线在线观看视频免费 | 综合无码一区二区三区四区五区 | 国产又色又爽又黄又免费软件 | 国产精品探花视频 | 亚洲黄色小说在线观看 | 国产精品熟女视频一区二区 | 人妻护士在线波多野结衣 | jzjzz成人免费视频 | 国产三级韩国三级日产三级 | 香港三级日本三级妇三级 | 波多野结衣在线视频免费观看 | 在线视频精品播放 | 久久精品6 | 欧美丰满熟妇乱xxxxx视频 | 一级特黄在线观看 | 午夜一区一品日本 | av无码久久久久不卡网站下载 | 337p日本欧洲亚洲大胆张筱雨 | 亚洲国产精品久久久久久6q | 好硬好湿好爽再深一点动态图视频 | 日韩欧美h | 青青草青娱乐 | 天堂√最新版中文在线地址 | 国产精品十八禁在线观看 | 亚洲一区二区乱码 | 国产高潮抽搐喷水高清 | 日本中文字幕在线视频 | 精品国产午夜理论片不卡精品 | 日韩区欧美国产区在线观看 | 欧美大屁股xxxx高跟欧美黑人 | 一本色道av久久精品+网站 | 在线精品国精品国产尤物 | 久久人人97超碰超国产 | 尤物视频在线看 | 亚洲精品欧美日韩一区 | 五月婷婷基地 | 一二三区精品视频 | 奇米成人影视 | 毛片导航 | 96在线观看 | 精品视频大全 | 国产女同视频 | 日韩天堂在线观看 | 亚洲仺av香蕉久久 | 一区二区国产在线 | 美女视频久久 | 午夜无码区在线观看 | 黄色片91 | 亚洲精品尤物 | 视频1区2区| 一区二区三区精 | 国产在线视频一区二区三区 | 五十路毛片 | 先锋影音一区二区三区 | 男男做爰猛烈叫床爽爽小说 | 人人澡人人妻人人爽人人蜜桃 | 色噜噜影院 | 琪琪午夜理论片福利在线观看 | 久久久久无码精品国产app | 亚洲欧美激情视频 | 国产午夜精品久久久久免费视 | 午夜精品久久久久久久久 | 色网视频 | 日本成熟少妇喷浆视频 | 人妻少妇偷人无码精品av | 国产成人麻豆免费观看 | 欧美xxxx黑人又粗又长精品 | 伊人欧美 | 2019毛片| 国产精品久久久久久亚洲 | 国产黄色片在线播放 | 亚洲成人第一 | 国产一区二区三区乱码 | 天堂√8在线中文 | 午夜日韩在线 | 国产色婷婷精品综合在线 | 51妺嘿嘿午夜福利 | 成人无码视频 | 久久w5ww成w人免费 | 欧美视频在线观看 | 女人高潮喷水毛片免费 | 日本少妇被黑人xxxxx | 国产一级片在线播放 | 欧美日韩xxx | 国产成人精品一区二区色戒 | 91精品国产综合久久精品图片 | 主站蜘蛛池模板: 国产精品99久久久久 | 可以在线观看av的网站 | 国产成人无码午夜福利在线直播 | 亚洲综合在线一区 | 一本色道久久综合精品竹菊 | 欧美xxxx做受欧美69 | 男人天堂av在线播放 | av中文字幕在线看 | 国产亚洲精品久久久久婷婷图片 | 一区二区三区视频在线播放 | 成年女人看片永久免费视频 | 国产精品自拍99 | 欧美人妻aⅴ中文字幕 | 少妇爽到呻吟的视频 | 国产亚洲精品俞拍视频 | 国内少妇人妻丰满av | 亚洲美女视频网站 | 2021在线不卡国产麻豆 | 国精品午夜福利视频 | 毛片在哪里看 | 亚洲成人av综合 | 99ri国产| 无码精品a∨在线观看中文 日本高清视频www | 自拍一区在线观看 | 最新中文字幕免费 | 国产精品手机免费 | 午夜福利视频极品国产83 | 这里只有精品视频在线播放 | 99在线精品视频观看免费 | 成人欧美性| 91捆绑91紧缚调教91 | 天天爱天天做天天添天天欢 | 亚洲xx网 | 超碰资源在线 | 日本韩国在线 | 九九热在线视频精品店 | 成人久久久久久 | 呦交小u女精品视频 | 久久久久四虎精品免费入口 | 爱情岛亚洲首页论坛小巨 | 影院色原网站 | www.av777| 精品蜜臀av在线天堂 | 999成人网 | 无码av免费永久免费永久专区 | 激情综合婷婷丁香五月情 | 国产精品特级毛片一区二区三区 | 日本大香伊蕉一区二区 | 中文字幕视频免费 | 日本肉体xxxx裸体137大胆 | 久久久中文字幕 | 国产免费黄色网址 | 日韩做a爰片久久毛片a片 | 亚洲午夜三级 | 茄子视频懂你更多在线观看 | 无码一区二区三区爆白浆 | 国产精品无码一区二区在线观一 | 久久久久一区 | 少妇饥渴偷公乱av在线观看涩爱 | 国产传媒免费视频 | 国产α片免费观看在线人 | 伊人一二三 | 97人人超碰国产精品最新o | 人人草在线视频 | 亚洲精品高清国产一线久久 | 在线精品一区 | 国产成人无码www免费视频播放 | 国产精品视频在线观看 | a一级黄色 | 在线观看国产丝袜控网站 | 精品久久久久久久久久久久 | 欧美激情在线看 | 越南性xxxx精品hd | 亚洲 欧洲 日韩 综合在线 | 亚洲色欲综合一区二区三区小说 | 久久久久久伊人高潮影院 | 亚洲欧洲国产码专区在线观看 | 无码被窝影院午夜看片爽爽jk | 女人爽到高潮的免费视频 | 太深太粗太大太猛太爽了视频 | 欧美黄色短视频 | 高跟丝袜av | 婷婷五月六月综合缴情 | 法国极品成人h版 | 国产男女嘿咻视频在线观看 | 尤物影院在线观看 | 毛片毛片毛片 | 绯色av一本一道道久久精品 | 午夜影视在线观看 | 日韩极品少妇 | 国产第一页浮力影院入口 | 国产乱人伦中文无无码视频试看 | 高清国产天干天干天干不卡顿 | 亚洲日本欧美日韩中文字幕 | 九九人人| 国产精品久久久久影院嫩草 | 亚洲精品三级 | 亚洲线精品一区二区三区影音先锋 | 国产v综合v亚洲欧 |